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Approach of semi-infinite dynamic lattice Green’s function and energy dissipation

due to phonons in solid friction between commensurate surfaces
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To investigate the relationship between solid friction and energy dissipation due to phonon, we developed a
coupled-oscillator surface model that consists of an infinitely large number of bulk atoms in a solid. This
method is formulated using a dynamic lattice Green’s function. A self-consistent scheme used for achieving a
steady state and a fast convolution method that reduces the high computational overhead are also presented.
Furthermore, a methodology to decompose the friction coefficient with the surface phonon modes is obtained.
The energy absorption band corresponding to the wave number of the surface phonon is found. These ap-
proaches clarify the role of the energy-dissipation mechanism in sliding friction. Two-dimensional friction
models in which both surfaces have same lattice constant, i.e., commensurate surfaces, are used to demonstrate
these methods. In the analysis of a friction system between flat surfaces, energy transfer from the kinetic
energy of a sliding solid to low-frequency surface phonons in the counter solid occurs in the presence of bulk
atoms. The energy dissipation into the bulk system leads to friction. We also investigate a friction system
between periodically contacting surfaces. It is found that surface phonons with nonzero wave number act as
channels for energy dissipation and alter the friction profile depending on the size of the contact area. When the
contact size is so large that a sufficient number of the nonzero wave number modes act as the energy-
dissipation channels, the profile of the friction decomposition with the nonzero wave number modes exhibits
good agreement with that estimated by a simple continuum model.
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I. INTRODUCTION

Technologies to control friction are essential requirements
in order to solve environmental issues and realize a zero-
emission society by reducing energy consumption. In the
past, the technical improvements have been done by using
knowledge obtained from elastic-contact theory, hydrody-
namics, and chemical analysis.' For example, the theory of
hydrodynamic lubrication based on the Reynolds equation
enables one to expect friction properties in the range of hy-
drodynamic lubrication.*> Furthermore, recent developments
of contact theory between solids provide qualitative explana-
tions of solid friction behavior.>3%-12 However, some impor-
tant issues such as expectation of friction coefficient in
ranges of boundary and mixed lubrication involving solid
contact have not been clarified yet.

One of the main difficulties in solid friction stems from
the fact that the friction is affected by various scale pro-
cesses: atomic-scale process such as collision of surface at-
oms and chemical reactions, and macroscale ones such as
plastic deformation and production of wear debris.>!*!% An-
other reason is the fact that friction is a dynamic phenom-
enon. Because in situ observation of a rubbing interface is
extremely difficult, we must rely on measurements of a
rubbed surface after sliding. Additionally, the construction of
a theory to treat dynamical phenomena emerging during en-
ergy dissipation, namely, nonequilibrium steady states, still
remains a major challenge in the sphere of theoretical
physics®

However, recent analysis techniques, e.g., atomic force
microscopy,'® and simulation methods such as molecular-
dynamics (MD),'7-28 and electronic state calculations?® have
been employed to investigate the microscopic elementary
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processes that could not be studied previously; they have
greatly contributed toward gaining basic understanding of
solid friction'*!* The two constituent factors of solid friction
can be categorized as follows: (a) interface phenomena: sur-
face electronic state, adsorbate, lubricant molecule, plastic
deformation, adhesion, wear, etc. (b) Energy dissipation
mechanism of a solid: excitations of phonon (general solids)
and electron (mainly metals).

Because contact areas during friction can be intense reac-
tion fields due to the high local pressure and shear stress,
many studies have focused on the relationship between the
interface phenomena and the friction. On the other hand, the
energy dissipation mechanism of a solid depends on the bulk
property. The kinetic energy of a sliding solid triggers the
interface phenomena that induce excitations of the inner de-
grees of freedom of a solid; in the case of a phonon, for
instance, lattice vibrations (phonons) are excited. The excited
phonons propagate into an inner solid and convert into ther-
mal energy, and thus, they never return to the surface unless
impurities exist in the solid. The irreversible processes lead
to energy loss, i.e., friction. Therefore, the study of friction
should be addressed in detail from the viewpoint of the en-
ergy dissipation mechanism of a solid as well as the interface
phenomena. However, owing to the difficulty of dealing with
such a highly nonequilibrium phenomenon, the relationship
between the friction and the energy dissipation mechanism
has not yet been clarified well. Our work focuses on the
energy dissipation due to a phonon because it plays the role
in general solids.

One of the solutions for depicting the energy dissipation
mechanism of a solid is to include infinitely large bulk atoms
of a solid. Suppose that in a finite-sized solid an impinged
surface phonon reaches the bottom of the solid and reflects to
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the surface; this cannot be irreversible process. If we can
project degrees of freedom of infinitely large atoms into the
coordinates of the surface atoms, the surface atoms are
damped by a damping kernel that represents phonon energy
dissipation without reflection; this projection directly yields
the framework of the generalized Langevin equation.’%3!
Zwanzig?? first used the projection in a one-dimensional har-
monic chain model to analyze gas collision on a solid sur-
face. In order to include the temperature effect, Adelman and
Doll*334 generalized the formulation within the generalized
Langevin approach and showed that the damping kernel can
be connected to the lattice Green’s function (LGF) that ex-
presses the response of a system with external force.3>-3¢
Some extensions of this approach have been done for the
purpose of developing multiscale strategies that couple to-
gether atomistic and continuum numerical methods.?’#!

In keeping with the trend of the LGF method, Campafid
and Miiser*? developed an MD simulation method based on
static LGF of elastic semi-infinite solids for the static and
quasistatic friction analysis. For the dynamic system,
Sokoloff**#* first investigated the kinetic friction in a one-
dimensional chain system by applying perturbation theory to
dynamic LGF. Recently, Braun et al.*> constructed the non-
perturbative dynamic LGF of the same system in the Fourier-
frequency space in order to study the transition of stick-slip
motion.* Their approach, however, considers the atomic co-
ordinates only in the one-dimensional direction: sliding di-
rection. In our previous work,* we formulated the dynamic
LGF of the one-dimensional chain system in real-time space
extending two-directional degrees of freedom: sliding and
surface normal directions. This extension enables us to ob-
tain the kinetic friction coefficient because the normal pres-
sure can be defined explicitly. We revealed a significant de-
pendence of the friction coefficient on the properties of the
inner bulk atoms.

To the best of our knowledge, despite its potential effec-
tiveness for various physical phenomena, there are few
works using the semi-infinite dynamic LGF (SI-DLGF) other
than a simple system such as a one-dimensional harmonic
chain. One of the impediments in its use is that deriving
analytical solutions of the SI-DLGF above one-dimensional
system is difficult although some numerical approaches for
tackling this problem have recently been reported.’®-4! An-
other difficulty is the computational costs. It is well known
that the ordinary numerical treatment for the convolution that
appears in the SI-DLGF formalism has a high computational
cost because the calculation requires the past history of the
phenomenon.

In this work, we propose the SI-DLGF for a harmonic
two-dimensional square lattice system, which is derived ana-
lytically. This formulation easily extends to the three-
dimensional cubic one. The advantage is that this method
treats the infinitely large number of solid atoms that cannot
be treated by conventional MD simulations. Furthermore, us-
ing the analyticity of the SI-DLGF, we introduce a fast con-
volution method*’ that reduces the high computational
costs dramatically. These findings enable the SI-DLGF
method to be applied to a large and general system. We also
present a method for the decomposition of the friction coef-
ficient in wave numbers and frequencies of surface phonon
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modes. The method tells us the contribution of each surface
phonon mode to the total friction coefficient; it is useful to
analyze the solid friction in terms of the dynamics of surface
atoms. The SI-DLGF and the friction decomposition meth-
ods will be demonstrated using simple two-dimensional fric-
tion systems in which both surfaces have same lattice con-
stant, commensurate surfaces in other words. Although the
commensurate systems artificially enhance elastic instability
that does not make such a large contribution to realistic
friction,2!243152 we intentionally use the systems for the
purpose of a fundamental study of the phonon dissipation in
the solid friction.

In these methods, we assume that the intrabonds in a solid
are replaced with springs connected to the nearest-neighbor
atoms. The effect of anharmonicity cannot be included. Fur-
thermore, the methods are restricted to the square and cubic
structures and single constitution of atomic elements. There-
fore, our methods should be used to acquire a basic under-
standing of the role of the energy-dissipation mechanism due
to phonons in solid friction, rather than a quantitative analy-
sis that can be carried out by atomic-scale simulations such
as MD and electronic state calculation.

This paper is organized as follows. Section II provides
theoretical descriptions of the SI-DLGF, the fast convolution,
and the friction decomposition method, and the computa-
tional details are shown in Sec. III. The SI-DLGF results of
two simple friction systems are presented in Sec. IV. One
analysis is performed in a friction system between flat sur-
faces, which completes our previous study of the same
system.*® Another analysis is performed using a system that
contains periodic contact areas. Through these results, we
discuss the relationship between surface dynamics and solid
friction. Section V provides the summary and conclusion.

II. FORMULATION

We present descriptions of the theoretical approach. Al-
though the formulation is provided for a two-dimensional
square lattice, all the methodologies in this section can be
extended to a three-dimensional cubic lattice through a simi-
lar procedure.

A. Surface lattice model

We consider a two-dimensional square lattice in which N
and N’ atomic layers align in the surface normal direction (z)
and lateral direction (x), respectively. The bottom layer con-
nects to a rigid body. Applied periodic boundary condition in
the x direction, the lattice forms a surface. We assume that
bonds between atoms in the solid are replaced with springs
and only the surface atomic layer is subjected to external
force. We denote the x and z displacements of an atom by u,
and the equation of motion of the lattice is then given by

ml}i,]!§+ Ku<2bt77!§— E “17,§+A§_ 5&11/{77’1)
Ag
+ K;(Zu,]yg— AE MmA”‘g) = 5&1F,:7, (1)
7

where atomic labels #» and & are n=1,2,...,N' and ¢
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=1,2,...,N, respectively. £=1 represents a surface atomic
layer and £=N is a bottom atomic layer connected to a rigid
body. & and A denote the Kronecker delta and nearest-
neighbor atomic label, respectively. m and F are an atomic
mass and external interaction force. Although the interaction
force is a function of time 7 and atomic positions r(z), we
denote it by simply F(¢) as long as no ambiguity arises. Ki )
is a spring constant of a bond between atoms labeled by the
neighboring &(7). Owing to the periodic boundary condition
in the x direction, u satisfies Uy e=Upnt &
We rewrite Eq. (1) in the tensor expression as

u, FY/m
u, 0
& N\ :
—+D+D’ = . , (2)
2
dt [L¥3 :
uy 0
ll§= (Ml’f,lxlz’g, ,Mn,g, 7“N’,§)7

where D and D’ represent the elastic force between atoms
corresponding to the second and third term on the left-hand

side in Eq. (1), respectively. We use the accented mark " to
indicate the fourth rank tensor of NXN XN’ XN’ in the fol-
lowing.

B. Semi-infinite dynamic lattice Green’s function

The Green’s function of Eq. (2) satisfies the following
equation:

& . L)\ A
(%+D+D’)G(1)=15(t),

R d -
G(t=0)=—G(=0)=0,
dt

where ] is a unit tensor. By Laplace transformation, we ob-
tain

FZ+D+D")G(R) =1, 3)
where 7 is a complex coordinate. Then, we operate diagonal
matrices U” and UP" for D and D' on Eq. (3). Using the
facts that U” and UP' commute and that their tensor ele-

D D D'
ments are U, ., .=6,,Ug; and U, ., .

Cp A UR.UP,
[0P0”' 6@l yerj= 5o ™

’ )
2+ (@) + ()

=5§,jUL,;,, we obtain

(4)

where (wf'))2 and (a)f),)2 are the eigenvalues of D and D',
respectively. Then, we operate (U?)~! and (U)~! and per-
form the inverse Laplace transform. Note that U” and U”'
are unitary matrices. Here, we treat the time derivative of G
rather than G itself for the sake of convenience in the fol-
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lowing formulations. The matrix element of g=d/ ditG in t
>0 is given by

Cy ()= 2} URU U U, cos(V(w])+ (] )1).
Js
()

’ ’
wjl-), w? R UJD, and ULW)Z can be written as

D _ . D' _ o
w/=asinb, o =a sinAl2,

Ug;={sin 2£6; - sin 2(6 = 1) 6/ (V2N + 1 sin 6)),

U?,;= {cos Al(n—1) +sin Al(n— D}\N',

where  0,=m(j-1/2)/(2N+1), ot '=2\K{)/m, and A
=2m/N'. j=1,2,...,N, and [=0,*1,%x2,...,=(N'/2
-1),N'/2 in the <case of even N and [
=0,*1,*2,...,*(N'=1)/2 in the case of odd N’. Be-
cause the interaction force affects only the surface atomic
layer £=1, the tensor element of ¢ that we need to consider is
&' =1. Furthermore, it is sufficient to know the motion of the
surface atomic layer for the purpose of the friction analysis;
thus, we only consider g, ,/ s &= hereafter, omitting the
indices ¢ and &' for the sake of simplicity. Substituting the
above-mentioned eigenvalues and matrix elements into Eq.
(5) gives

1
8y (1) = 1 25 005 Allm = 7)s/(0), (6)
1
4 R
s(t) = E N 1cos2 0; cos(aVsin® 0;+ ﬂlzt),
i +

where 8,= V"K;/ K, sin Al/2. In the limit of infinite N, we can
convert the summation of s; into an integral changing vari-
able 6,— 6 and derive

4 /2
s,(r) = —f cos® 0 cos(aVsin® 0+ ,8,2t)dt9. (7)
T

0

By the Green’s function, the formal solutions of the ve-
locities of the surface atoms can be formulated as

N’ t
i, (1) =) + 2 fog,],nr(t—t’)F';,(t’)/mdt’, (8)
77':1

where #° is the solution under an initial condition in which
the lattice distorts uniformly without any external force. This
solution is necessary to obtain the steady state of the friction
system; we will discuss about it in the next subsection. Al-
though Eq. (8) is the basic equation, it requires N’> number
of convolutions if we use Eq. (8) itself for the simulations.
For the sake of reduction of the number of convolution to be
N', we rewrite the solution substituting Eq. (6) into Eq. (8)
as
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FIG. 1. Profiles of the SI-DLG F. White circles, solid line, and
dashed line indicate s; obtained by the numerical 6 integration in
Eq. (7), the asymptotic solution §; [Eq. (13)], and 5o [Eq. (12)]. «
=2, 3,=0.5, and the partition number of the 6 integral is 13.

i, (1) = i) + 2 f s(t =t {Fi“(t')cos Aln
1 0

+ F{°(¢")sin Almidt' Im, 9)

where (=2, F,,/N' cos Aly'  and =2,

N’ sin Aln'. The meaning of s; becomes clear by the discrete
iy=1/N"ZN_ exp(iAlp)it,.

Fourier transformation of L’t,?:

Equation (9) transforms into

12

(1) = 8,00°(t) + f si(t=t)F(")de' Im,  (10)
0

where
¥
Fy'=— 2> exp(iAln)F", (11)

Namely, s; represents the SI-DLGF in the wave number /
space of the surface lateral direction.

The remaining task is to obtain specific values of s;. In the
case of /=0, Eq. (7) can be solved as (see Appendix A)

so() = 2J,(an)/(at), (12)

where J,, is the first-kind Bessel function of order n. The
profile of s, is shown in Fig. 1 (dashed line). On the other
hand, s,.( is not expressed explicitly but is formulated by the
integral expression in Eq. (7). It should be noted that we
must not operate the integral numerically. Let us recall that
the integral is originally derived from the conversion of the
summation of j in the limit of infinite N. Thus, when the
integral is performed by the finite difference method, it
amounts to calculating s; of the finite bulk system corre-
sponding to the partition number of the 6 integral. Figure 1
(white circles) shows the result of s, obtained using the finite
difference method. s; decreases with time. This indicates that
the response of an atom with an applied force decays; in
other words, a surface phonon excited by an external force
diminishes because of the propagation of the wave over the
bulk atoms. However, at t~ 35, s; recovers significant ampli-
tude. This is attributed to the recurrence of a vibration wave
that reflects at the bottom of the lattice.

PHYSICAL REVIEW B 82, 115424 (2010)

The easiest way to prevent the recurrence of the vibration
wave is to take a sufficiently large value of partition number
of the @ integral so that the vibration wave does not return in
the simulation time. However, the time required for ordinary
friction simulations is generally quite long (>100 ps) with
respect to the time scale of s;. Thus, the numerical integration
with such a large partition number would become impos-
sible. More critically, this procedure does not adhere to the
theoretical framework for the semi-infinite lattice system.

Therefore, in order to involve the infinite bulk atoms, we
have to perform the integral in Eq. (7) analytically. Although
we could not find the solution of the integral over whole
values of ¢, we found that the integral can be solved in a
large ¢ limit and the asymptotic solution of s; is obtained. The
detailed derivation appears in Appendix A. The asymptotic
solution §; is derived as

5(0)==2BJ,(aByt). (13)

Figure 1 (solid line) shows the profile of 5j; it decreases with
time without the reflection of vibration even in the region of
t>35. In the small ¢ region, it is seen that §; immediately
converges with the numerically obtained s; profile. The good
convergence performance of the asymptotic solution is at-
tributed to the fact that the asymptotic condition
JodyJi(y)/y—1 (see Appendix A), where y=at/2, is well
satisfied even at a relatively small ¢ region, because the inte-
grand J,(y)/y decays relatively fast as /2.

We offer a strategy to construct s;. First, set the value of 7,
such that the asymptotic solution §; becomes nearly equal to
s;, which is obtained from Eq. (7) by the numerical method
with enough partition number such that the reflection of vi-
bration at 7. does not occur. Then, the numerically obtained s,
is used in r=t, and the asymptotic solution is set in #>7,.

C. Self-consistent scheme to achieve a steady state

We introduced #°, the solution of Eq. (2) for F=0, under
the initial condition in which a uniform distortion is imposed
on all atoms in the lattice. The solution is required for
achieving a steady state for the infinite N lattice system, be-
cause the elastic force of the infinite lattice vanishes in terms
of scaling arguments.*0>3 Let us illustrate this fact with the
following example.

If all atoms are assumed to have no distortions and are at
rest as an initial condition, x%(¢) and 1#°(¢) are zero. Even
under the initial condition, in a finite N lattice system, the
lattice distorts due to friction and normal forces and the elas-
tic forces of the distortions balance the forces after a certain
time period; then, a steady state is achieved. On the other
hand, in the case of an infinite N system, it is impossible to
attain distortions that balance the friction and normal forces
because it takes infinite time to distort the infinite bulk at-
oms. This fact indicates that we cannot achieve a steady state
for the infinite N system if we simply employ the u’(z)
=14°(r)=0 solutions.

The problem specific to the infinite N system can be over-
come by the initial state providing a uniform distortion over
the infinite N atomic layers in advance. Then, the initial dis-
tortion is chosen to balance the friction force at the steady

115424-4



APPROACH OF SEMI-INFINITE DYNAMIC LATTICE...

state. Here we derive #° that satisfies the initial condition.

Because the uniform distortions over all the atoms are
considered, the elastic-force term resulting from the displace-
ment between atoms labeled by # vanishes. This model is
equivalent to a one-dimensional chain system. Thus, with the
index 7 being omitted, the motion equation of the finite N
system is written as

K

..0 0 2: 0 0

u§+ u<2u§— M§+A§—5§’1M1>=0,
m A&

udt=0)=A,N-£+1), idt=0)=0,

where A, denotes a constant displacement between adjacent
: 0 0 o

atoms; 1.e;,()u§(t=%) —Ou§+](t=0) .=Au. Multiplying by Ugj and

denoting i ) =3 U ¢ g We obtain

d? -

a D2 _

dt2+(wj) it; =0.
This equation can be solved as ﬁ?(t)zcj cos ”t. The unde-
termined coefficient c; is derived from the initial condition as

N

A cos 6,
c;=A> (N-E+ U2 = ——2———1
! el & 22N + 1 sin? 0}‘

and u(g)(t) is expressed as
N
0 D D
ug(t) = 21 Ugjcj cos wj't.
J=

In the same manner as that in the last subsection, we only
consider =1, and omit the index. Taking the limit of infinite
N, the time derivative of u° can be derived as

uO(z)z_A"“ Ji(at) + a f [Jz(at)dt , (14)
2 0

where integral expressions of the Bessel functions were used.

Let us emphasize that A, are important parameters be-
cause they control the force balances of the system along the
x and z directions in the steady state. In the z direction, the
parameter A, gives a compression along the surface normal
direction over an infinitely large bulk system. One can deter-
mine an averaged normal force per atom F* in a given fric-
tion system by choosing AZ=FZ/KZ. The parameter A,, in
turn, represents the distortion along the shear direction, and it
is not decided a priori like A,. Next, we present a scheme to
obtain A, that achieves a steady state. Because (X)), is zero at

the steady state, we can derive the condition of A, using Egs.
(7). (9), and (14)

S
K

X

Nl
Ar=—\ 2 F({r .o/ |, (15)
7=1

t

where (), denotes a long-time-averaged operation and {rﬂ}
represents a set of atomic coordinates of the surface atoms.

The specific steps for achieving a steady state in the SI-
DLGF method are as follows. (i) Set a sliding velocity, A,
that determines the normal pressure, and an arbitrary value of
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A,. Then, calculate the time evolution of the surface atoms
by Eq. (9). (ii) Insert the calculated {r,} into the right-hand
side of Eq. (15). The obtained value is denoted by A_. (iii) If
[(Al-A,)/A,|=8A,>A, it is judged that A, used in the cal-
culation does not give the steady state, where A is a small
value. Then, replace €A +(1-€)A,—A, and return to step
(i), where 0<e<1. If SA, <A, it is judged that A,=A and
the steady state is realized.

This scheme is a self-consistent calculation for finding A’.
Owing to the iteration of steps (i)—(iii), we can achieve a
steady state for the infinite N friction system and obtain the
friction coefficient.

D. Fast convolution method

Equation (9) involves a convolution of s; with a force. It is
known that a classical method for computing the convolution
over N, time steps requires a large memory space O(N,) to
store a force history and O(N[2) operations. The high compu-
tational costs impede numerical simulations employing the
Green’s function approach. In actual simulations, the trunca-
tion of time history in the convolution integral is often used.
This truncation is applicable if the Green’s function, i.e., the
response kernel, decreases rapidly with time. In our case, s
decays as 1~¥/? whereas s,..( has a long tail as r~'/2. It appears
to be necessary to integrate over a long past history in order
to maintain the accuracy of the calculations. The fast convo-
lution algorithm using the inverse Laplace transform, called
modified Talbot’s method, can be a powerful tool in our ap-
proach to reduce the computational costs. We present a brief
description of this method in the use of our method; the
complete description is available in literature.*’->°

Using the asymptotic solution 5; described in Eq. (13), the
convolution can be separated at time point 7. that one
chooses so as to suitably converge 5; with s;. This convolu-
tion is approximated when >, as

f Asl(t—t')F(t')dt'+fEl(t—t’)F(t')dt’, (16)

1, 0

where F is an arbitrary force function and As;=s;,—5;. The
first term does not have a high computational cost even if we
use an ordinal numerical method because 5; converges to s;
with relatively small ¢.. Most of the computational cost arises
from the second term because it contains the entire past his-
tory of the phenomenon.

In the fast convolution method, the analytical form of the
Laplace transform of the kernel is required. We obtained &
explicitly and its Laplace formation can be written as

VZ+(afB)’ -2

5@)=-2—F—7—=",

2 a7+ (aB)?

where 7 is a complex coordinate. Then, the time region of the
convolution of the second term in Eq. (16) is decomposed.
We consider P as the smallest integer for which t<2BFh,
where the base B> 1 is an integer, and determine the integer
g, such that Tp=qulh satisfies
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t-1,¢€ [B’h,(2B? - 1)h], p=1,...,P-1,
where £ is an interval of a time step. We set t=7y> 7> 1,
>+ >7p=0. With a series of 7,, the second term of Eq.

(16) can be split as

t P Tpel
f 5(t—1)F(t")dt' =, 5(t— DF(Ddr.
0 p=1 T
Using the inverse Laplace transform, [7-'5;(t— 7)F(7)d7 can
P
be written as

o gl(z‘)JTp_lexp(—ZT)F(T)dT , (17)

where £7! is the operator of the inverse Laplace transform. It
is known that the time integral in Eq. (17) can be calculated
using the knowledge of F(7) and F(7—h) recursively:*7°
thus, we do not have to track the entire history of the force.

The main difficulty in Eq. (17) arises from the numerical
integration for the inverse Laplace transform. The integration
over Im z=— to % causes the oscillation of the exponential
exp(zt). In the modified Talbot’s method,*”#8- the difficulty
is solved by replacing the integral line along the complex
axis vertically with an integral contour: its start and end
points are set at Re z=—o and the path runs around the sin-
gularities of the kernel in a counterclockwise direction. In
this manner, the exponential rapidly decays along the contour
when we use the finite-difference method on the contour. The
choice of the shape of the contour has been determined on
the each time region [7,, 7,_; ] experimentally by minimizing
the error of the inverse Laplace transform.*’ By using the
fast convolution method, the computational costs of the con-
volution of the second term in Eq. (16) can be significantly
reduced: O(logz N,) memory requirement and O(N, logg N,)
operations.

E. Friction decomposition with surface phonon modes

Because energy loss accompanies the energy transforma-
tion of the kinetic energy of a sliding solid into the vibration
energy of the surface atoms, it is expected that the contribu-
tion of the surface phonon to the energy loss generally de-
pends on the phonon modes. Braun et al* proposed a
method to decompose friction into the contributions of the
frequency modes in the semi-infinite one-dimensional chain
system. Here, we extend their method of the friction decom-
position to the semi-infinite surface system.

Suppose that a body on a surface is sliding at velocity V
under normal load Fp. For the sake of conciseness in the
following discussion, we assumed that the upper body is
rigid and only the lower body is responsible for the energy
dissipation. This restriction does not change the following
discussion essentially and it can be easily removed. The fric-
tion coefficient u has a thermodynamic relationship with the
energy loss rate per unit time J as®
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J
=—. (18)

From the microscopic view points, the energy loss rate can
be defined by denoting the velocity of a surface atom u in the
lower body and force imposed on the surface atoms from the
upper body F as

JE — =
dt [,

where N’ indicates the number of surface atoms in the lower
body. If there is no viscous resistance due to the atmosphere
and fluid around the sliding body, energy loss occurs solely
at the interface; thus, the quantities J in Egs. (18) and (19)
are equal. There are two way for defining the kinetic friction
coefficient: one is the division of friction force by the normal
load and another is the thermodynamic definition in Eq. (18).
Of course, the values of the friction coefficient from both
definitions are the same. However, through Egs. (18) and
(19) using the SI-DLGF, the friction coefficient can be de-
composed into the contributions of surface phonon modes
and we can extract effective information about the relevance
of the dynamics of surface atoms to friction.

For the following procedure, it is convenient to use the
discrete Fourier transformed formulation. From the expres-
sion in the wave number [ space, Eq. (19) can be written as

JIN' = <E F; - ul>
1

N!
>F,u,/, (19)
7=1

t

, (20)
t
where * indicates a complex conjugate. Then, substituting
Egs. (10) and (11) into Eq. (20) and denoting J,, as the energy

dissipation components of vibrations in the x and z direc-
tions, we can obtain

_ 1
JUN' = i) F" + — 2 |Fi(0)|*Re 5,(0)
m

+ 3 S | F ) Re si(wy),

2m [ n=1

where F" is the averaged force per surface atom. F!(w,) is a
complex Fourier coefficient of Fy(r) with a time period of T

1 172
Fl”(wn = O) = }f F;‘(l‘)dl‘,

=T/2

2 T2
Fi(w, #0)= f explio,) F*(Ddt,

-T2

where the vibration frequency w,=2wn/T, (n=1,2,...).
s/(w) is the Fourier-Laplace transformed form of s,(¢) and it
is given by

s)(w) =f exp(—iwt)s,(t)dt. (21)
0
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As shown in Appendix B, s;(w) can be derived analyti-
cally. In the case of B <(w/@)><pi+1, the calculation

yields
20 | 1
R =—\/—F5-1 22
€ Sl((,()) az ((1)/61/)2 _ B[Q ( )

otherwise Re s/(w)=0. Using this fact and (i%),=—2F"/
(am) in the steady state, which is derived by Egs. (14) and
(15), we obtain

JJN' = }E > |Flw,)|*Re s(w,). (23)

m ; p=1

Substituting Eq. (23) into Eq. (18), we can obtain

M= E 2 2 M(ual’wn),

u=x,z | n=1

1
M(u’l’ wn) = —_|Fl(wn)|2Re sl(wn)’ (24)
2mF*V

where Fi=Fp/N' is the averaged normal force per surface
atom. As can be seen in Eq. (24), the friction coefficient is
decomposed by the surface phonon modes (u,/, w,). The in-
dex u indicates the contributions of the vibrations in the x
and z directions: the transverse and longitudinal wave modes.

We note two interesting points from the above results. As
seen in Eq. (24), the friction coefficient is written by the sum
of the multiplications of the mode components of the surface
interaction force |F}(w,)|* and the real part of the SI-DLGF
s/(w). Because the SI-DLGF depicts the response of a solid
considering the infinitely large bulk atoms, the friction coef-
ficient is expressed separately as surface interaction
X energy dissipation property of a solid in the mathematical
form (rigorously, the surface interaction depends on the vari-
able positions of the surface atoms, and thus, they are not
completely independent). Thus, we recognize the need to
treat not only the surface characters but also the mechanism
of energy dissipation reflecting the bulk properties for the
sliding friction, as mentioned in Sec. I.

Another important point is the energy absorption band
corresponding to the wave number / mode. The real parts of
s; are plotted in Fig. 2. Re sy holds finite values in the fre-
quency range from O to a. In the case of the /#0 mode,
Re s5,(w) has finite values only in the range of 8/ <(w/a)
< ,8,2+ 1. There exists a frequency band of energy absorption
corresponding to wave number mode / and it does not absorb
force components of frequencies that are not within the fre-
quency band. We can also see a large peak around the low-
frequency band edge w=a|@); it is attributed to vibration
resonance. In other words, the [ mode absorbs considerable
energy from the force component corresponding to the reso-
nant frequency.

III. COMPUTATIONAL DETAILS

We demonstrate the SI-DLGF method and the friction de-
composition for two simple systems of solid friction: one is
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FIG. 2. Real parts of s;(w,). Solid and dashed lines indicate
Re s5( and Re s; at 8,=1.0, respectively. Both lines are obtained with
a=1.0.

the friction between flat surfaces and the other is the friction
between periodically contacting surfaces. Both are two-
dimensional systems, and the upper and lower surfaces have
an identical lattice constant.

We perform all simulations with the bulk parameters as
those of diamond. The spring constants of diamond are esti-
mated to be K,=K=0.1 and K,=K=0.15 a.u. using elec-
tronic state calculations based on the density-functional
theory (DFT) employing the computational code Tokyo ab
initio program package (TAPP).>* The lattice distance is o
=2.88 Bohr and the mass is set to that of a carbon atom.
Because this study does not focus on specific features of the
interaction force between surfaces, we use a simple but un-
realistic force function. We employ the same soft-core poten-
tial as that used in our previous work,* in which an attrac-
tive potential is neglected as a first approximation. The cut-
off radius of the potential is equivalent to the carbon
diameter and the repulsion term is determined by fitting an
sp*> C-C bond repulsion caused by compressing the bond
length, which is obtained by the DFT calculations. The spe-
cific force function is

{ (o 6 u,—u
F'=0.12 <—) —1(——"H(o~r,).

Ta Iy

where the index a represents the upper surface atoms and r,,
is the distance between the upper and lower surface atoms. H
is the Heaviside step function.

The time evolution of the atoms is obtained by the fourth-
order Runge-Kutta method with an interval of a time step of
0.1 fs. The friction coefficient is calculated by dividing the
time-averaged friction force by the normal force. The friction
decomposition is performed in accordance with Eq. (24)
through the Fourier transformation of the force trajectories.

In the SI-DLGF method, we set #.=2.8 ps, base number
of the fast convolution B=10, and number of points on Tal-
bot’s integral contour as 21. We confirmed that these param-
eters ensure reliable calculations. For a self-consistent
scheme for a steady state, the efficient convergence of A; is
achieved by the time interval of each iteration set at o/V,
where V is the sliding velocity. The mixing parameter is €
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FIG. 3. Schematic image of the friction system between flat
surfaces. The lower body is a coupled-oscillator surface model that
consists of N inner bulk atomic layers. In the upper body, the atomic
bonds are frozen at their equilibrium positions, and they slide at
velocity V. The lattice constants of both bodies are the same.

=0.5. The iterations are performed until the error of the fric-
tion coefficient from the previous iteration is less than 1%.

The SI-DLGF method can couple with the direct calcula-
tion of the motion equation because it is originally based on
the motion equation. We arrange one diamond-atomic layer
connected to a layer described by the SI-DLGF method; in
other words, the coupled motion equation is

--ar ar ! ar ar — U
miiy, + K, (1) —u,) + I(M<2u77 - AE ”mAn) =F,,
7

where ©® indicates the displacement of the arranged
diamond-atomic layer. The counter reaction force of the elas-
ticity Ku(u‘;r—u,y) is substituted into the force term in Eq. (9).
The arranged layer, in turn, behaves as the surface atomic
layer of the semi-infinite lattice system. Although the ar-
rangement appears to be less meaningful for describing the
semi-infinite system, it is numerically advantageous. The ar-
ranged layer corrects slight disagreements in the atomic dis-
placements u,, that arise from the numerical error of the con-
volution in the SI-DLGF method.

Seeing friction dependence on the bulk layers clearly, we
also perform calculations using a finite-slab surface model
that consists of N atomic layers aligned in the z direction and
introduce a velocity-proportional damping term. The artifi-
cial damping term should be determined so as to suitably
reproduce the energy decay of a surface atom. We choose the
damping term as VK, miig/(N+1-§), and add it to the left-
hand side of Eq. (1). The detailed derivation of the damping
term is described in Appendix C. It is known that this way of
introducing the damping terms, which act strongly on deeper
bulk atoms, can prevent vibrational energy reflection at the
bottom of the lower solid.*’

IV. RESULTS AND DISCUSSIONS
A. Solid friction between flat surfaces

We consider a friction system in which the upper and
lower bodies have a same lattice constant and atomically flat
surfaces, as shown in Fig. 3. The atoms in the upper body are
frozen at their equilibrium positions for simplicity and slide
at 10 m/s. The lower body is modeled by coupled oscillators
consisting of N atomic layers in depth and periodic boundary
condition is applied in the x direction. Owing to the transla-
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FIG. 4. Dependence of friction coefficient on the number of
atomic layers N at a sliding speed of 10 m/s. A, A, [J, B, O, and
¢ indicate friction coefficients for N=1, 100, 300, 1000, 2000, and
o, respectively. The values with N=o are obtained by the SI-DLGF
method.

tion symmetry of the friction system, all the surface atoms
are subjected to the same interaction force, and thus, the
surface atoms move coherently. This is substantially equiva-
lent to the one-dimensional chain model; thus, it allows to
excite only the wave number /=0 mode of the surface pho-
non.

Figure 4 shows the dependence of friction coefficients on
N. In the case of N=1, the friction coefficients are almost
zero. On the other hand, the friction coefficients increase
with N and the values converge to those of infinite N. The
friction coefficients increase with a higher normal pressure in
large N systems. This is because the interaction force we use
does not include an attractive force, and the surface atoms of
the upper and lower bodies bite deeper each other with a
higher normal pressure; this is called the atomistic locking
state.>® It is also seen that over a thousand bulk atoms con-
tribute to the friction coefficients. The result indicates the
importance of including the bulk atoms for the analysis of
the solid friction.

To clarify the role of the bulk atoms, the time variations
of the force on the lower surface atoms are shown in Fig. 5.
In the case of N=1, the force in the x direction is relatively
small as compared to that in the z direction, and that in the x
direction takes a sinusoidal profile with both plus and minus

(a) (b)
0 ~ 0.004
\
:
= z 0 T
£ -001 ' = !
s i £ -0.004
H
-0.02 :
i -0.008 }
-0.03 i I

012
122 124 126 128 130 132 134 136
Time [ps]

122 124 126 128 130 132 134 136
Time [ps]

FIG. 5. Time histories of force on surface atoms of the lower
bodies. (a) and (b) show the results of N=1 and « surface models,
respectively. Solid and dotted lines indicate forces in the x and z
directions, respectively. Normal pressure is 100 MPa.
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FIG. 6. Decomposition of friction coefficient with frequency w,
modes. w,, represents washboard frequency. Normal pressure is 100
MPa.

values. On the other hand, in the N=% system, the forces
increase sharply when the surface atoms of both solids come
into contact, and they decay slowly. The force shapes are not
symmetrical and the force in the x direction maintains posi-
tive vales in total; namely, a friction force appears.

The N=1 system, equivalent to a harmonic oscillator, has
one eigenresonance frequency a/2=vK,/m, and the oscilla-
tor resonates with the force component of the frequency. On
the other hand, in terms of the interaction force, the eigen-
frequency is regulated by the sliding velocity V and a lattice
constant o as

w,=2mV/o=no,,

where n=1,...,% and w,=27V/ o that is called “washboard
frequency.” The washboard-frequency component often be-
comes the main term of the interaction force.>® The eigenfre-
quency of the N=1 system is on the order of sound velocity,
whereas w,, is on the order of the sliding velocity below
~m/s in general. Thus, the harmonic oscillator does not
resonate with the shear. The surface atoms change their po-
sitions adiabatically in response to changes of the interaction
force. In this manner, the surface atoms experience both
positive and negative friction forces, resulting in near-zero
friction.

In the case of infinite N, on the other hand, the force in the
x direction increases and finite values of the friction coeffi-
cient appear. This can be understood from the friction de-
composition. Figure 6 shows the decomposition with the fre-
quency modes. It is seen that the lowest frequency o,
component shares a large amount with the total friction co-
efficient. The contributions of the higher frequency decrease.
Namely, the surface phonon mode of w,, generates the large
energy dissipation of the friction system.

The friction dependence on N can be explained in terms
of the concept of the energy absorption band. As N increases,
the number of the eigenfrequency, wjp in Sec. II B, increases.
Consequently, as shown in Fig. 2, the energy absorption band
ranging continuously 0 < w, < « is formed in the limit of the
infinite N system. The surface can absorb the low frequency
of w,, that is the main term of the interaction force, and thus,
the friction occurs. It is also understood that over N> 1000
atoms are required for the friction coefficient encompassing
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FIG. 7. Contributions of longitudinal (O) and transverse (@)
wave modes to the total friction coefficient (< ).

the resonance with w,, because the characteristic frequency «
is larger than w,, by three orders of magnitude in the friction
system.

Then, the friction contributions of the vibrations in the x
and z directions, namely, the transverse and longitudinal
wave modes, are shown in Fig. 7. The contribution of the
longitudinal mode occupies a large share of the total friction
coefficient. Because the ratio of the forces in the x and z
directions, namely, friction coefficient, is below 0.25, the ra-
tio of the frequency components of the forces in the x and z
directions would also be of the same order. According to Eq.
(24), the friction contribution is proportional to the square of
the frequency component of the force. Therefore, the contri-
bution of the longitudinal wave mode becomes large. This
result indicates the importance of the degree of freedom of
the z direction for the analysis of solid friction.

B. Solid friction between periodically contacting surfaces

Here we consider a friction system in which an upper
surface periodically contacts with a flat lower surface, as
shown in Fig. 8. In the unit cell, the lower body consists of
infinite bulk atoms and the surface atoms of N’ align along
the x direction. In the upper body, the number of surface
atoms is N'/4 in the unit cell, the intrabonds are frozen at
their equilibrium positions, and the body slides at 10 m/s. To
form the surface morphology, a periodic boundary condition

Z OO ®_ 0. "

N—o00
— i
X v
N’

FIG. 8. Schematic image of the friction system with periodic
contact areas. The lower body consists of infinitely large inner bulk
atoms and N’ surface atoms in a unit cell. The sliding upper body
has N'/4 surface atoms in the unit cell and the atomic bonds are
frozen. The lattice constants of the both bodies are the same. A
periodic boundary condition applies to the unit cell.
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FIG. 9. Dependence of friction coefficient on N'. As a reference
value, the friction coefficients for the friction system between flat
surfaces are plotted by ¢ (same plot as that shown in Fig. 4).

is applied to the unit cell in the x direction. The normal force
per surface atom does not change with the variation of N’ at
the same normal pressure because the ratio of the numbers of
upper and lower surface atoms is fixed at 1/4. We assume
that the lattice constants of both the bodies are same. There-
fore, the condition of the contacting area is the same as that
of the former friction system with the exception of the non-
contacting area. Thus, the lower surface atoms are allowed to
vibrate not only in the wave number /=0 mode but also in
the /# 0 modes.

From the analysis of the friction system, the influence of
the excitation of the /# 0 modes on friction should be clari-
fied. Furthermore, there is another aspect to discuss the fric-
tion system. In actual solid friction, the surface is not com-
pletely flat but there exist many tiny protrusions on it and the
protrusions contact the opposite surface producing friction.?
Namely, because of coexisting real contact points and non
contacting area on the real friction surface, the study of the
friction system here also serves as a basic analysis of the real
contact points.

Figure 9 shows the variations in the friction coefficients
with an increase in N’. In the case of N'=4, the friction
coefficients remain almost unchanged as compared to the
values of the friction between flat surfaces. This can be un-
derstood from the energy absorption band of the surface pho-
non modes. The interaction force has the main term corre-
sponding to the washboard frequency w,, and the magnitude
of the term at the higher frequency w,=nw,, decreases as n
increases. On the other hand, the wave number / mode takes
an energy absorption band ranging from ﬁ,2<(wn/a)2< ,8,2
+ 1. The characteristic frequency of the solid « is larger than
w,, by a factor of one thousand in this friction system. There-
fore, the condition in which the energy absorption band ab-
sorbs the main force component of w,, is roughly estimated
by 10°#|l| <N', where we approximate VK|/K,~ 1. Thus, a
large N’ is required to absorb the main component of the
interaction force. When N’ is much smaller, say, N'=4, [
# 0 modes absorb only the higher frequency components of
the force that are negligible amplitudes; and thus the coher-
ent mode, /=0, accounts for the friction coefficient. There-
fore, the N'=4 system has almost the same values as the
system between flat surfaces.
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FIG. 10. Decomposition of friction coefficient with wave num-
ber / modes in the range of /=0. Normal pressure is 100 MPa. The
inset shows the same plot on a log scale.

However, with an increase in N’, the friction coefficients
decrease, as shown in Fig. 9. To analyze larger systems with
N'=128, 256, and 512, the friction decompositions with the
wave number / modes are shown in Fig. 10. The plots indi-
cate the friction contributions of / modes, which are defined
by the sum of Eq. (24) over frequencies as

e}

pl) = 2 pulx,lw,) + ulz,1,0,). (25)

n=1

Because () ~ u(=I) due to the symmetry of /, we show the
values in the range of /=0. As N’ increases, the friction
contributions of /# 0 modes increase, whereas that of the /
=0 mode decreases. This is because the energy absorption
bands of /# 0 modes shift to the lower frequency range, and
thus, the absorbed lower frequency components of the inter-
action force increase. The reason for the decrease in the fric-
tion contribution of /=0 is explained as follows. The coher-
ent movements of the surface atoms are impeded by the
enhancement of the /# 0 modes. Accordingly, the coherent
components of the interaction force decrease and this leads
to the reduction in the friction contribution of /=0. Although
the friction contributions of [ # 0 increase, they do not absorb
the main force term of w,, and are thus small. On the other
hand, the contribution of /=0 decreases considerably because
it originally shares a large amount of the friction coefficient;
thus, the total friction coefficients decrease as N’ becomes
large.

Here we introduce a long-wavelength approximation for
exploring systems with much larger N'. As discussed before,
the wave number / does not absorb less frequency than its
lower frequency edge @8] in the energy absorption band. In
addition, the force components of the higher frequencies are
small. Therefore, it is expected that the friction behavior
does not essentially change even if we cut off / modes above
a certain high wave number. Thus, we introduce a cut-off
frequency w.=n.,w,, and consider only / modes that absorb
frequencies below the cut-off frequency; namely, only [
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FIG. 11. Dependence of friction coefficient on N'. V, @, O, A,
and A indicate friction coefficients of N'=512, 1024, 2048, 8192,
and 16 384 obtained by the long-wavelength approximation, respec-
tively. As reference values, the friction coefficients for N'=512
without the long-wavelength approximation are indicated by H
(same plot as that shown in Fig. 9) and the values for the system
between flat surfaces are indicated by ¢ (same plot as that shown
in Fig. 4).

modes that satisfy a|8)|=2\K//m|sin 7l/N'|< w, are calcu-
lated in the simulations. Owing to the approximation, the
calculation is sped up significantly. Figure 11 shows the fric-
tion coefficients obtained by the approximation with the pa-
rameter n.,=20 and K,=K_. In the case of N'=512, the
friction coefficients with the approximation (white inverted
triangles) are slightly larger than those without the approxi-
mation (black squares). This is because the inhibition of the
energy dissipation of /=0 is weakened owing to the /#0
modes being cut off. However, the differences between the
values are less than 5%, and thus, the approximation should
be reasonably accurate for the friction system.

By applying the long-wavelength approximation, the fric-
tion coefficients of a much larger N’ system are obtained. As
shown in Fig. 11, the values decrease further in the N’
=1024 system (black circles) and they increase suddenly in
the N’ =2048 system (white circles). As N’ increases further,
the values increase but at a lesser rate and the profiles be-
come convergent.

In order to analyze the changes in the friction coefficients,
they are decomposed by / modes. Figure 12 shows the pro-
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FIG. 12. Decomposition of friction coefficient with wave num-
ber [ modes. @ and O indicate u(/) for N'=1024 and 2048, respec-
tively. Normal pressure is 100 MPa.
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FIG. 13. Decomposition of friction coefficient with wave num-
ber [ modes. A indicate w(l) for N'=16 384. Asterisks indicate
w(1) that is derived with the continuum model [see Eq. (27) in the
text]. Normal pressure is 100 MPa.

files of w(l) in the cases of N'=1024 and 2048. In N’
=2048, a significant increase in the contributions at |I|=1 is
clearly observed. The analysis of the energy absorption edge
for N’ =2048 suggests that this results from the |/|=1 modes
absorbing the main force term of the w,, component. In other
wards, channels of the energy dissipation |I|=0 and 1 open,
and consequently, the total friction coefficients suddenly in-
crease. For N’ =2048, the energy dissipation channels that
absorb the w, component successively open through the
modes |I|=0,1,2,..., and thus, the total friction coefficients
increase.

Although the friction coefficients increase with N’, the
values do not diverge but appear to converge. To obtain the
insight into such a large N’ system, the profile of w(l) for
N'=16384 is shown in Fig. 13 (white triangles). The friction
contribution of /=0 is the largest and the value decreases
with fluctuation as |/| increases.

To understand the damped-vibration profile of w(l), we
consider a simple continuum model. First, the solids in the
friction system shown in Fig. 8 are assumed as continuum
bodies in the limit of large N’; the lengths of the upper and
lower surface are L and ML, respectively, where M indicates
the factor by which the lower surface is larger than the upper
one; M=4 in the being considered system. f* denotes the
applied force distribution of the lower surface in the x and z
directions per unit length. Then, a simple approximation for
f* is used. The lower surface is subjected to a force only in
the contact area and this force is assumed to remain uniform
with position in the contact area; that is, f“(x,w,)
=f"(w,){H(x)—H(L-x)}, where H is the Heaviside step
function. Substituting f“(x,w,) into the continuum limit of
Eq. (11), we can derive

M . 2
Flo(w,) =] ;;0(0)”)|2{Esm(7rl/M)} , (26)

where |FiLy(w,)|*=|Lf"(»,)|>. Then, because of the large val-
ues of N', Re 5,(w) ~Re sy(w) according to Eq. (22). By the
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FIG. 14. Distribution of time-averaged force in the z direction
on the lower surface atoms. The force is averaged over the time
required by the upper body to slide one period of the lattice. Plots
are those for N'=256 and the dashed line indicates the force distri-
bution calculated by the theory of elastic contact. o represents the
lattice constant and normal pressure is 100 MPa.

approximation of the SI-DLGF, substitution of Eq. (26) into
Eq. (24), and the use of Eq. (25), the friction decomposition
of the [ mode based on the continuum model can be written
as

M 2
w (1 #0)=pu(l=0) ESiﬂ(Wl/M) . 27)

Using the numerically obtained value of u(/=0) in Eq. (27),
the approximated w*(/) is obtained. p*() has zero nodes at [
multiples of four corresponding to M =4, and the friction
component is inversely proportional to the square of /. The
values of u*(I) are replotted in Fig. 13 (asterisks). It is seen
that u*(I) well describes the profile of u(l). Thus, the
damped-vibrational behavior of w(l) is attributed to the ratio
of the upper and lower areas and the expansion coefficients
of the force with wave number.

In particular, at |I|=9, we can see that the friction contri-
bution is much larger than the value expected by the con-
tinuum model. From the estimation of the energy absorption
edge, we can see that the transverse wave at |/|=9 absorbs
the w,, component at its lower band edge and |/|=10 does
not absorb the w,, component. As shown in Sec. I E, the real
part of the SI-DLGF has a resonant peak around its lower
frequency band edge. Thus, the transverse phonon mode of
|| =9 resonates with the interaction force driven by the shear
and the energy dissipation due to the resonated mode is en-
hanced. As a result, the friction contribution is slightly larger
than that obtained by the continuum model. To verify it, we
performed a calculation for a system with N'=32768 (not
shown here), and confirmed that the friction contribution of
|I|=9 is much closer to the value expected by the continuum
model because, in turn, the resonant peak is assigned at |l|
=18.

Next, the applied force distribution on the lower surface
atoms is considered. Figure 14 shows the distribution of the
force in the z direction for the N'=256 system. The force is
averaged over the time it takes the upper body to slide in one
period of the lattice constant. This force has a large ampli-
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tude around the edge of the contact area and it decreases as
being closer to the center of the area. According to the clas-
sical theory of elastic contact, in two-dimensional contact,
when a rigid stamp with a flat bottom is pressed on an infi-
nitely large elastic body, the normal force distribution is
given by?

FL

F(x) = T,
m(L12)? = x?

(28)

where f* denotes the averaged normal force in the z direc-
tions per unit length. There is no arbitrary fitting parameter
in Eq. (28). The force distribution is replotted in Fig. 14. It
exhibits good agreement with that obtained by our method
although there is a small deviation because of the asymmetry
in the x direction due to the sliding effect. In Fig. 13, the
profile of w(l) has peaks at slightly lower wave numbers than
these expected by the simple continuum model and the fric-
tion contribution is not completely zero at / multiples of four.
In the continuum model, to derive u*(7), we assumed unifor-
mity of the contact force, although the actual force has the
local distribution shown in Fig. 14. This accounts for the fact
that the profile of w(/) shifts to a lower wave number range
and the values are not completely zero at the nodes. It is
expected that if the local distribution of the force is included
in the continuum model, a more accurate value of w*(l)
would be obtained.

We note an interesting point through these results. Unless
the order of N’ is around 10* w(l) does not exhibit good
agreement with u*(1). Furthermore, as shown in Sec. IV A,
the number of bulk layers required for solid friction is on the
order of 10°. Thus, our friction analysis includes tens of mil-
lions of atoms in total to obtain the friction property in the
continuum limit. On the other hand, the force distribution of
the contact area shows good agreement with that obtained by
the classical theory of elastic contact for N of the order of a
few hundreds. In addition, a molecular dynamics simulation
showed that the force distribution agrees with the theory of
elastic contact from the calculation of tens of thousands of
atoms for such a two-dimensional contact between atomic-
scale flat bodies.!® This suggests that for a macroscopic sys-
tem in which the continuum limit is effective, much larger
atomistic degrees of freedom are required for the kinetic
solid friction as compared to a static physical quantity such
as force. Such a requirement of a large number of degrees of
freedom might be one of the difficulties that have impeded
the construction of a macroscopic approach for the solid fric-
tion starting from the atomistic theory.

Finally, we present overviews of the friction decomposi-
tions of the N'=16384 system mapped in the (/,w,) space
for the transverse and longitudinal waves in Figs. 15(a) and
15(b), respectively. It is globally seen that from the main
term of (/=0, w,,), the friction contribution decreases with an
higher frequency and it behaves as a damped vibration. Spe-
cifically, the transverse (=9, w,,) mode provides a relatively
large contribution of the friction owing to the resonance of
the surface phonon. Similarly, although the contribution of
the longitudinal (/=12,w,) mode corresponds to the zero
node expected by the continuum model we used, it has a
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(@) 1 1, w)

Friction coefficient

FIG. 15. Decomposition of friction coefficient with (u,/,w,)
modes. (a) and (b) show the contributions of transverse and longi-
tudinal modes to the friction coefficient for N'=16 384, respec-
tively. Normal pressure is 100 MPa.

large value owing to the resonance not to be the node. It can
also be seen that the contributions of the longitudinal modes
are larger than those of the transverse modes. In fact, the
contributions of the longitudinal modes share approximately
70% of the total friction coefficient, and thus, the importance
of the z degree of freedom is also confirmed in the friction
system. As seen from the above results, the friction decom-
position with surface phonon modes would be an effective
tool for the analysis of solid friction, revealing a relationship
between the dynamic process of surface atoms and energy
dissipation.

V. SUMMARY AND CONCLUSION

In summary, we have developed the SI-DLGF method to
incorporate the mechanism of energy dissipation due to pho-
non. The actual value of the SI-DLGF can be obtained by
combining the analytically derived asymptotic solution of the
SI-DLGF and the numerically obtained one based on the
integral expression. A scheme to achieve a steady state in the
friction systems is also presented. Using the analyticity of
the SI-DLGF, we introduced a fast convolution method that
significantly accelerates computation speed of the method.
Focusing on energy dissipation rate, we presented the de-
composition of the friction coefficient with surface phonon
modes. It was also found that wave number / mode has an
energy absorption band and the mode can absorb energy
through the force term of frequencies only within the band.

These methods were demonstrated using simple friction
systems between two-dimensional solids having identical lat-
tice constants. One is the friction between atomically flat
surfaces and the other is the friction between periodically
contacting surfaces. The main results are listed in below: (a)
energy dissipation occurs due to the excitation of surface
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phonons in the presence of bulk atoms. The surface phonon
absorbs the main force term at the lowest frequency, i.e.,
washboard frequency w,,. (b) Friction coefficient depends on
size of the contact area. (c) When [# 0 modes do not absorb
the force term of w,,, the friction coefficient decreases. The
[#0 modes absorb faint force terms of frequencies higher
than w,,, and the /# 0 modes perturb the excitation of the /
=0 mode that originally causes large energy dissipation. (d)
When the contact size is so large that a sufficient number of
[#0 modes absorb the w,, term, the friction coefficient in-
creases. The profile of the friction decomposition with [
modes exhibits good agreement with that estimated by a
simple continuum model.

It is important to stress here that the values of friction
coefficients in this paper were obtained in the commensurate
systems. Friction generally occurs between incommensurate
surfaces, and it is known that direct excitations of surface
phonons by collision of surface atoms, namely, elastic insta-
bility, would be small.>!*? Therefore, the simplicity we used
does not allow to make prediction of actual experiments of
friction that involves the interface phenomena such as plastic
deformation, adhesion and wear.2!=2* Nevertheless, the virtue
of the SI-DLGF method lies on its potential to depict dy-
namical response of solid surface and, equivalently, energy
dissipation due to phonon. By this method combined with
ordinal MD method, one might capture some important fea-
tures of actual friction including heat transfer by phonon
correctly. In addition, besides friction analysis, this method
could be used to study dynamical contact mechanics such as
effect of shear stress and surface deformation when the as-
perities collide, that cannot be treated by the static LGF
approach.'?#2

We comment on extensions of the SI-DLGF method. We
treated two-dimensional coupled oscillators in which the
structure is restricted to a square one, the intra-atomic bonds
are replaced with springs connected to only the nearest
neighbors and they are set at zero Kelvin. It can be readily
extended to the three-dimensional structure through the
analogous procedure. The introduction of a finite temperature
has already been promised by the Adelman and Doll’s?*3*
works within the framework of the generalized Langevin
equation.’3¢ The extensions of a general structure and be-
yond the nearest-neighbor bond remain difficult at this stage.
We feel that combining the asymptotic solution of our SI-
DLGF with some numerical methods®’~*! might enable such
extensions.

In this work, ten million order of atoms were treated sub-
stantially for the analysis of the solid friction. This is a great
advantage of the SI-DLGF method because if one study such
a large-scale system by an ordinary MD simulation, it may
be laborious to obtain only one value of the friction coeffi-
cient even by using latest high-performance computers. In
addition, it should be noted that a simple continuum-solid
model could explain the friction decomposition with / modes
in the large-scale system, although the actual value of the
friction coefficient cannot be expected yet. This fact possibly
helps to approach a macroscopic theory of solid friction
starting from a microscopic approach.

The SI-DLGF method and the friction decomposition
with surface phonon modes provide clear information about
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the relationship between surface phonons and solid friction.
From a different viewpoint, it appears to capture solid fric-
tion using the terminology of solid-states physics. Actually,
the concepts of the decomposition with modes and the en-
ergy absorption band are commonly used such as electronic
band structure, optical spectrum, and vibration spectrum.>®>’
These have greatly contributed to the development of fields
such as electronic devices and surface science. In solid fric-
tion, these concepts have yet been adequately developed. We
hope that the generalization of the SI-DLGF and the friction
decomposition methods and the basic knowledge yielded by
them will assist further developments of friction-control
techniques.
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APPENDIX A: ASYMPTOTIC SOLUTION OF SI-DLGF

After the Taylor expansion with ¢ and performing the 6
integral of Eq. (7), we obtain

2m! 2(n—m)
‘( + 1)'22m 1 ’

s(1) = E t)z”E Cp

o (2n )'

where ,C,, indicates the number of combinations and it is
defined as ,C,=n!/m!(n—m)! Changing the index k=n
—m and the order of the sum, we can decompose s; as

si(r) = 2 sk(r), (A1)
k=0

_T ok S D)m2m-k) )
(t) :Bl nEkZ ‘{(n—k)!}z(n—k+1)!y2 )

where y=at/2. Then, s?‘ is expressed with n'=n—k as

(- 2)’< S = Qn' =Dt
0= E , o,
n'l(n"+1)!  2n" +2k-1)!
where we denote n' !'!=n’(n'—2)---3-1 in the case of odd n’

and n'!!'=n'(n'-2)---4-2 in the case of even n’. Consider-
ing the forms of sf and s?‘_l, it is found that they satisfy the
recurrence equation as

HOE —Bly f “(dy. (A2)

Thus, s} can be obtained by the recursive substitution of s}~
in Eq. (A2). The first term s) does not depend on [ and is
equivalent to sy; it can be expressed using the integral for-
mula of the Bessel function as

so(t) =J,(2y)/y.

;%0 can be derived if we perform the sum in Eq. (A1). How-
ever, we could not perform the sum over infinite k. Thus, we
focus on the large ¢ region. s,l is written as
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y
5,()==2B7y J dyJ,(2y)ly.
0

When vy is sufﬁciently large, f 3dyJ(2y)/y—1, and thus, the
asymptotic solution 5} =—2/7y. Using Eq. (A2), we obtain

(-

T

551 =28

Therefore, the asymptotic solution of s; can be obtained as

§)(2) = so( )+2 1(0) = 50(2) = 281 (aB),

where the integral formula of the Bessel function was used
again. Furthermore, the first term s, decays as r>/%; on the
other hand, the second term slowly decays as #~'/2. Thus, we
can omit the first term as the asymptotic solution and derive

5i(1)==2BJ ().

APPENDIX B: FOURIER TRANSFORMED SI-DLGF

By substituting Eq. (7) and performing the time integral,
Eq. (21) can be written as

()_41_w \ﬂ,+l /1+Bl -Xx?
SR ,8[ x> - (a)/oz)2

where X2?=\sin? 6+ B,. Then, changing the variable Y

=N(1+8-X2)/(X>-B2) and A;=1+{B2—(w/a)?}"", the in-
tegral can be expressed as

=2 [ Ay,
Slw__ﬂ'a2 Y2+1 Y2+A

Here we use an integral formula [§(Y>+A) =7/ (2 VA,) and

obtain
2w 1
s(w) = {\/—( ; )2 ﬁlz—l—i}.

APPENDIX C: FINITE-SLAB SURFACE MODEL

In a finite slab model that consists of N atomic layers, an
energy damping term has to be set in the motion equation
because it becomes an energy-conserving system without
damping. The purpose of this appendix is to derive a suitable
damping term so as to reproduce the energy dissipation of
the vibration wave generated by sliding. As a reference sys-
tem, we consider the one-dimensional chain system in which
the surface atom is distorted initially.

Ku
ﬁ§+_(2”§_%“§+A§_5§,1”(1)>=O, (C1)

m

u(t=0)=X8,, ult=0)=0.

The motion of equation can be solved by a procedure similar
to that shown in Sec. II C.
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X o
u t) = mz {cos[m(2j - &N +1)]

+cos[m(2j = 1)(é=1)/(2N + 1) ]}cos wJDt.

In the limit of N—o, the position of the surface atom
(é=1) is written as

2X
uy (1) = V_EJl(m)' (C2)

Then, we determine the damping term relative to the in-
finite N solution. We assume that the damping term is pro-
portional to the atomic velocity. Owing to the dimension
analysis of Eq. (C1), the damping term should be C g\fKumug,
where C; is a dimensionless parameter. We choose C;
=C/(N+1-¢) and C=1.0. The damping term we use is cho-
sen to increase as deeper bulk atoms. We have confirmed that
this prevents a reflected wave rather than simply using a
constant damping term.

Figure 16 shows the surface positions obtained by the
numerical calculation of the motion equation including the
damping term and the infinite N solution of Eq. (C2). As
shown in Fig. 16(a), in the case of N=40, the damping pro-
file of the surface atom is very close to that of the infinite N
system. On the other hand, in the case of N=1, the damping
profile differs considerably from that of the infinite N sys-
tem; although we tried several values of C, the results did not
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FIG. 16. Profiles of the surface positions. (a) Solid line, dashed
line, and dotted line indicate the surface-atomic positions in the
N— o [Eq. (C2)], N=40, and N=1 systems, respectively. The finite
systems include the damping term described in the text. (b) Solid
line, dashed line, and dotted line indicate the surface-atomic posi-
tions in the N—o, N=40 with and without the damping term,
respectively.

change greatly. Figure 16(b) shows the profiles at a time
when a vibration wave that results from the initially given
displacement of the surface returns to the surface. While the
profile without the damping term recovers its amplitude that
with the damping term suppresses the reflected wave as in
the case of the infinite-N profile. These results indicate that
the damping term we chose is expected to mimic the energy
dissipation due to phonon well.

'D. Dowson, History of Tribology (Longman, London, 1979).

2E. P. Bowden and D. Tabor, The Friction and Lubrication of
Solids (Clarendon Press, Oxford, 1954).

3L. A. Galin, Contact Problems in the Theory of Elasticity (North
Carolina State College, North Carolina, 1961).

4A. Cameron, The Principles of Lubriction (Longman, London,
1966).

5D. Dowson and G. R. Higginson, Elasto-Hydrodynamic Lubri-
cation (Pergamon Press, Oxford, 1977).

6J. A. Greenwood and J. B. P. Williamson, Proc. R. Soc. London,
Ser. A 295, 300 (1966).

7M. Ciavarella, J. A. Greenwood, and M. Paggi, Wear 265, 729
(2008).

8B. N. J. Persson, J. Chem. Phys. 115, 3840 (2001).

°B. N. I. Persson, Phys. Rev. Lett. 99, 125502 (2007).

10T, Nakahara and S. Momozono, Proceedings of the Institution of
Mechanical Engineers, Part J: Journal of Engineering Tribology
222, 335 (2008).

1L, Pei, S. Hyun, J. F. Molinari, and M. O. Robbins, J. Mech.
Phys. Solids 53, 2385 (2005).

12¢. Campaiia, M. H. Miiser, and M. O. Robbins, J. Phys. Con-
dens. Matter 20, 354013 (2008).

BB. N. J. Persson, Sliding Friction: Physical Principles and
Application, 2nd ed. (Springer, Berlin, 2000).

14C. M. Mate, Tribology on the Small Scale (Oxford University
Press, New York, 2008).

158, Sasa and H. Tasaki, J. Stat. Phys. 125, 125 (2006).

16M. Ishikawa, R. Harada, N. Sasaki, and K. Miura, Phys. Rev. B
80, 193406 (2009).

17Y. Mo and 1. Szlufarska, Phys. Rev. B 81, 035405 (2010).

18G. He, M. H. Miiser, and M. O. Robbins, Science 284, 1650
(1999).

19B. Luan and M. O. Robbins, Nature (London) 435, 929 (2005).

208, Cheng, B. Luan, and M. O. Robbins, Phys. Rev. E 81, 016102
(2010).

21C. Campaiid, Phys. Rev. B 75, 155419 (2007).

22M. H. Miiser, Tribol. Lett. 10, 15 (2001).

23B. L. Holian and J. E. Hammerberg, Phys. Rev. E 68, 036101
(2003).

24D. K. Ward, D. Farkas, J. Lian, W. A. Curtin, J. Wang, K.-S.
Kim, and Y. Qi, Proc. Natl. Acad. Sci. U.S.A. 106, 9580 (2009).

M. Chandross, C. D. Lorenz, M. J. Stevens, and G. S. Grest,
Langmuir 24, 1240 (2008).

26H. Washizu, S. Sanda, S. Hyodo, T. Ohmori, N. Nishino, and
A. Suzuki, SAE Trans., J. Mater. Manuf. 116, 414 (2007).

2TH. Washizu and T. Ohmori, Lubr. Sci. 22, 323 (2010).

28N. Sasaki, N. Itamura, and K. Miura, Jpn. J. Appl. Phys., Part 2
46, L1237 (2007).

8. Dag and S. Ciraci, Phys. Rev. B 70, 241401(R) (2004).

30H. Mori, Prog. Theor. Phys. 33, 423 (1965).

3IR. Kubo, Rep. Prog. Phys. 29, 255 (1966).

2R, Zwanzig, J. Chem. Phys. 32, 1173 (1960).

33S. A. Adelman and J. D. Doll, J. Chem. Phys. 61, 4242 (1974).

34S. A. Adelman and J. D. Doll, J. Chem. Phys. 64, 2375 (1976).

115424-15


http://dx.doi.org/10.1098/rspa.1966.0242
http://dx.doi.org/10.1098/rspa.1966.0242
http://dx.doi.org/10.1016/j.wear.2008.01.019
http://dx.doi.org/10.1016/j.wear.2008.01.019
http://dx.doi.org/10.1063/1.1388626
http://dx.doi.org/10.1103/PhysRevLett.99.125502
http://dx.doi.org/10.1243/13506501JET365
http://dx.doi.org/10.1243/13506501JET365
http://dx.doi.org/10.1243/13506501JET365
http://dx.doi.org/10.1016/j.jmps.2005.06.008
http://dx.doi.org/10.1016/j.jmps.2005.06.008
http://dx.doi.org/10.1088/0953-8984/20/35/354013
http://dx.doi.org/10.1088/0953-8984/20/35/354013
http://dx.doi.org/10.1007/s10955-005-9021-7
http://dx.doi.org/10.1103/PhysRevB.80.193406
http://dx.doi.org/10.1103/PhysRevB.80.193406
http://dx.doi.org/10.1103/PhysRevB.81.035405
http://dx.doi.org/10.1126/science.284.5420.1650
http://dx.doi.org/10.1126/science.284.5420.1650
http://dx.doi.org/10.1038/nature03700
http://dx.doi.org/10.1103/PhysRevE.81.016102
http://dx.doi.org/10.1103/PhysRevE.81.016102
http://dx.doi.org/10.1103/PhysRevB.75.155419
http://dx.doi.org/10.1023/A:1009086631388
http://dx.doi.org/10.1103/PhysRevE.68.036101
http://dx.doi.org/10.1103/PhysRevE.68.036101
http://dx.doi.org/10.1073/pnas.0900804106
http://dx.doi.org/10.1021/la702323y
http://dx.doi.org/10.1143/JJAP.46.L1237
http://dx.doi.org/10.1143/JJAP.46.L1237
http://dx.doi.org/10.1103/PhysRevB.70.241401
http://dx.doi.org/10.1143/PTP.33.423
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1063/1.1730869
http://dx.doi.org/10.1063/1.1681723
http://dx.doi.org/10.1063/1.432526

KAIJITA, WASHIZU, AND OHMORI

35L. Kantorovich, Phys. Rev. B 78, 094304 (2008).

36L. Kantorovich and N. Rompotis, Phys. Rev. B 78, 094305
(2008).

37A. J. Chorin, O. H. Hald, and R. Kupferman, Proc. Natl. Acad.
Sci. U.S.A. 97, 2968 (2000).

BW. Cai, M. de Koning, V. V. Bulatov, and S. Yip, Phys. Rev.
Lett. 85, 3213 (2000).

3X. Li and W. E, Phys. Rev. B 76, 104107 (2007).

40G. J. Wagner and W. K. Liu, J. Comput. Phys. 190, 249 (2003).

41H. S. Park, E. G. Karpov, P. A. Klein, and W. K. Liu, J. Comput.
Phys. 207, 588 (2005).

42C. Campaiis and M. H. Miiser, Phys. Rev. B 74, 075420 (2006).

43]. B. Sokoloff, Phys. Rev. B 42, 760 (1990).

44]. B. Sokoloff, J. Appl. Phys. 72, 1262 (1992).

$0. M. Braun, M. Peyrard, V. Bortolani, A. Franchini, and
A. Vanossi, Phys. Rev. E 72, 056116 (2005).

463 Kajita, H. Washizu, and T. Ohmori, EPL 87, 66002 (2009).

PHYSICAL REVIEW B 82, 115424 (2010)

47C. Lubich and A. Schidle, SIAM J. Sci. Comput. (USA) 24, 161
(2002).

48 A. Talbot, J. Inst. Math. Appl. 23, 97 (1979).

49 G. Capobianco, D. Conte, 1. D. Prete, and E. Russo, BIT 47, 259
(2007).

01, D. Prete, Ph.D. thesis, Universita degli Studi di Napoli Fe-
derico 1I, 2006.

SI'M. Hirano and K. Shinjo, Phys. Rev. B 41, 11837 (1990).

32K. Shinjo and M. Hirano, Surf. Sci. 283, 473 (1993).

S3M. H. Miiser, EPL 66, 97 (2004).

54J. Yamauchi, M. Tsukada, S. Watanabe, and O. Sugino, Phys.
Rev. B 54, 5586 (1996).

3SM. Hirano, Surf. Sci. Rep. 60, 159 (2006).

36J. M. Ziman, Principles of the Theory of Solids, 2nd ed. (Cam-
bridge University Press, Cambridge, 1972).

57G. Attard and C. Barnes, Surfaces (Oxford University Press,
New York, 1998).

115424-16


http://dx.doi.org/10.1103/PhysRevB.78.094304
http://dx.doi.org/10.1103/PhysRevB.78.094305
http://dx.doi.org/10.1103/PhysRevB.78.094305
http://dx.doi.org/10.1073/pnas.97.7.2968
http://dx.doi.org/10.1073/pnas.97.7.2968
http://dx.doi.org/10.1103/PhysRevLett.85.3213
http://dx.doi.org/10.1103/PhysRevLett.85.3213
http://dx.doi.org/10.1103/PhysRevB.76.104107
http://dx.doi.org/10.1016/S0021-9991(03)00273-0
http://dx.doi.org/10.1016/j.jcp.2005.01.028
http://dx.doi.org/10.1016/j.jcp.2005.01.028
http://dx.doi.org/10.1103/PhysRevB.74.075420
http://dx.doi.org/10.1103/PhysRevB.42.760
http://dx.doi.org/10.1063/1.351732
http://dx.doi.org/10.1103/PhysRevE.72.056116
http://dx.doi.org/10.1209/0295-5075/87/66002
http://dx.doi.org/10.1137/S1064827501388741
http://dx.doi.org/10.1137/S1064827501388741
http://dx.doi.org/10.1093/imamat/23.1.97
http://dx.doi.org/10.1007/s10543-007-0120-5
http://dx.doi.org/10.1007/s10543-007-0120-5
http://dx.doi.org/10.1103/PhysRevB.41.11837
http://dx.doi.org/10.1016/0039-6028(93)91022-H
http://dx.doi.org/10.1209/epl/i2003-10139-6
http://dx.doi.org/10.1103/PhysRevB.54.5586
http://dx.doi.org/10.1103/PhysRevB.54.5586
http://dx.doi.org/10.1016/j.surfrep.2005.10.003

